

The diagram shows two sides of a rhombus ABCD.

(a) Write down the co-ordinates of A.

[1]

$$(-2,3)$$

(b) Complete the rhombus ABCD on the grid.

[1]

Question 2

$$y = mx + c$$

Find the value of y when m = -2, x = -7 and c = -3.

[2]

Question 3

The point A has co-ordinates (-4, 6) and the point B has co-ordinates (7,-2).

[3]

Calculate the length of the line AB.

length =
$$\int (-2-6)^2 + (7+4)^2$$

= $\int 185 = 13.6$

Question 4

Find the equation of the line passing through the points with co-ordinates (5, 9) and (-3, 13). [3]

$$m = \frac{13-9}{-3-5} = -\frac{1}{2}$$
 $y - 13 = -\frac{1}{2}(3x + 3)$

The Maths Society

 $y = -\frac{1}{2}x + \frac{23}{2}$

The diagram shows the straight line, l, which passes through the points (0, 3) and (4, 11).

(a) Find the equation of line
$$l$$
 in the form $y = mx + c$.

$$M = \frac{y_2 - y_1}{y_2 - y_1} = \frac{11 - 3}{4 - 0} = 2$$

$$Y = 2x + 3$$
[3]

(b) Line p is perpendicular to line l.

Write down the gradient of line p.

[1]

[2]

[3]

[1]

Question 6

A(5, 23) and B(-2, 2) are two points

(a) Find the co-ordinates of the midpoint of the line AB.

midpoint = $\left(\frac{5-2}{2}, \frac{23+2}{2}\right)$

(b) Find the equation of the line AB.

(c) Show that the point (3, 17) lies on the line AB.

y= 3(3)+8 - 17 ... (3,17) lies on AB.

Question 7

Find the equation of the line passing through the points (0, -1) and (3, 5).

$$m = \frac{5+1}{3-0} = 2$$
 $\begin{cases} y+1=2x \\ y=2x-1 \end{cases}$ The Maths Society

(a) The two lines y = 2x + 8 and y = 2x - 12 intersect the x-axis at P and Q.

(b) Write down the equation of the line with gradient -4 passing through (0, 5).

$$y-5=-4x$$
 $y=-4x+5$
[2]

(c) Find the equation of the line parallel to the line in part (b) passing through (5, 4).

$$y - 4 = -4(x - 5)$$

Some gradient

 $y - 4 = -4(x - 5)$

Use $y - 4 = -4x + 24$

Question 9

(a) Find the co-ordinates of the midpoint of the line joining A(-8, 3) and B(-2, -3).

midpoint =
$$\left(-\frac{8-2}{2}, \frac{3-3}{2}\right)$$
 = $\left(-5, 0\right)$

(b) The line y = 4x + c passes through (2, 6).

Find the value of c.

(c) The lines 5x = 4y + 10 and 2y = kx - 4 are parallel.

Find the value of k.
$$y = \frac{5x - 10}{4}$$

$$y = \frac{kx}{2} - \frac{4}{3}$$

$$\frac{k}{2} = \frac{5}{4}$$
The Maths Society
$$k = \frac{10}{4} = 2.5$$

The co-ordinates of A, B and C are shown on the diagram, which is not to scale.

(b) Find the equation of the line AC.

I

Question 2

A(1,3), B(4,1) and C(6,4) are shown on the diagram.

(b) Work out the equation of the line BC.

Work out the equation of the line BC.

$$M = \frac{4-1}{6-4} = \frac{3}{2}$$

$$= \frac{3}{2} \cdot x - \frac{1}{2}$$

$$= \frac{3}{2} \cdot x - \frac{5}{2}$$

(c) ABC forms a right-angled isosceles triangle of area 6.5 cm².

[2] Length $_{AB}$? $\int (1-3)^2 + (4-1)^2 = \int [3-3]^2 + (4-1)^2 + (4-1)^2 = \int [3-3]^2 + (4-1)^2$ Calculate the length of AB.

Find the length of the straight line from Q(-8, 1) to R(4, 6).

Length =
$$\sqrt{(6-1)^2 + (4+8)^2}$$

Question 4

[3]

The lines
$$AB$$
 and CB intersect at B .

(a) Find the co-ordinates of the midpoint of AB .

(b) Find the equation of the line CB .

$$M = \frac{4-3}{-5} \qquad y - 4 = -\frac{1}{5}x \\
 = \frac{1}{5} \qquad y - -\frac{1}{5}x + 4$$

Question 5

The diagram shows the straight line which passes through the points (0, 1) and (3, 13).

Find the equation of the straight line. [3]

$$y = 13 - 1$$

 $y = 1 = 4x$
 $y = 4x + 1$

The Maths Society

- (a) Using a straight edge and compasses only, construct the perpendicular bisector of AB on the diagram above. [2]
- (b) Write down the co-ordinates of the midpoint of the line segment joining A(1, 8) to B(7, -4).

(c) Find the equation of the line AB.

$$\sqrt{(4-8)^2 + (4-1)^2}$$
= 65 = 13.42

Question 7

(a) The line y = 2x + 7 meets the y-axis at A.

Write down the co-ordinates of A.

- (b) A line parallel to y = 2x + 7 passes through B(0, 3).
 - (i) Find the equation of this line.

$$m_{1/2} = 2$$

 $y-3=2x$, $y=2x+3$ [2]

(ii) C is the point on the line y = 2x + 1 where x = 2.

Find the co-ordinates of the midpoint of *BC*.

$$y = 4+1 = 5 \qquad (2,5)$$
midpoint = $\left(\frac{2}{2}, \frac{3+5}{2}\right) = \left(\frac{2}{1}, \frac{3}{4}\right)$
The Maths Society

Find the equation of the straight line which passes through the points (0, 8) and (3, 2).

m:
$$\frac{2-8}{3-0} = \frac{-6}{3} = -2$$
 $y-8 = -2x$ [3] $y = -2x + 8$

[1]

[3]

[1]

[1]

[1]

Question 1

The points (2, 5), (3, 3) and (k, 1) all lie in a straight line.

(b) Find the equation of the line.

(a) Find the value of k.

$$m = \frac{3-5}{3-2} = 2 \quad y-3=-2(x-3)$$

 $y = -2x+9$

Question 2

(a) The line y = 4 meets the line 2x + y = 8 at the point A. Find the co-ordinates of A.

(b) The line 3x + y = 18 meets the x axis at the point B. Find the co-ordinates of B.

(c) (i) Find the co-ordinates of the mid-point M of the line joining A to B.

$$\left(\begin{array}{c} 2+6 & 4 \\ 2 & 2 \end{array}\right) = \left(4,2\right)$$

(ii) Find the equation of the line through M parallel to 3x + y = 18.

The Maths Society

ı

Find the length of the line joining the points A(-4, 8) and B(-1, 4).

length: 5 (4-8)2+(-1+4)2=5

[2]

[2]

[1]

Question 4

The distance AB is 7 units.

(a) Write down the equation of the line through B which is parallel to y = 2x + 3.

(b) Find the co-ordinates of the point C where this line crosses the x axis.

Question 5

The equation of a straight line can be written in the form 3x + 2y - 8 = 0.

(a) Rearrange this equation to make y the subject. [2]

$$2y = -3x + 8$$

 $y = -3x + 8$

(b) Write down the gradient of the line. [1]

write down the gradient of the line.

(c) Write down the co-ordinates of the point where the line crosses the y axis. [1]

The line l passes through the points (10, 0) and (0, 8) as shown in the diagram.

(a) Find the gradient of the line as a fraction in its simplest form.

[1]

$$m^{2} - \frac{8}{10} = \frac{4}{5}$$

(b) Write down the equation of the line parallel to l which passes through the origin.

$$y = -\frac{4}{5}\chi$$

(c) Find the equation of the line parallel to *l* which passes through the point (3, 1).

[2]

Question 7

(a) Calculate the gradient of the line 1.

$$m^2 = \frac{5}{10} = -\frac{1}{2}$$
 [2]

(b) Write down the equation of the line *l*.

Question 8

The straight line graph of y = 3x - 6 cuts the <u>x-axis</u> at A and the <u>y-axis</u> at B.

[2]

(a) Find the coordinates of A and the coordinates of B.

$$3x.6=0 y2.3(0)-6=-6$$

$$3(2)$$
(b) Calculate the length of AB. A (2,0)
$$(0,-6)$$
[2]

6-32 $\int (-6)^2 + (2)^2$ leight

(c) M is the mid-point of AB. Find the coordinates of M.

The Maths Society

$$\text{midpoint} = \left(\frac{2}{2}, \frac{-6}{2}\right) = (1, -3)$$

A line has gradient 5.

M and N are two points on this line.

M is the point (x, 8) and N is the point (k, 23).

Find an expression for x in terms of k.

[3]

Question 2

NOTTO **SCALE**

A is the point (-2, 0) and B is the point (0, 4).

(a) Find the equation of the straight line joining A and B.

(b) Find the equation of the perpendicular bisector of AB.

 $mid = (\frac{-2}{2}, \frac{4}{2}) = (-1, 2)$

Question 3

A is the point (8, 3) and B is the point (12, 1). y = -1 (x + 1)Find the equation of the line, perpendicular to the line AB, which passes through the point (0, 0).

$$m: \left(\frac{1}{12-8}\right) = \frac{-2}{4} = \frac{1}{2}$$

[3]

[3]

[3]

[3]

[4]

Question 4

(a) Find the equation of the line l.

Give your answer in the form y = mx + c.

(b) A line perpendicular to the line l passes through the point (3, -1).

Find the equation of this line.

Point A has co-ordinates (3, 6).

[1]

[2]

[3]

[6]

[2]

(a) Write down the co-ordinates of point B.

(b) Find the gradient of the line AB.
$$m = \frac{1-6}{7-3} = \frac{-5}{9}$$

(c) Find the equation of the line that

is perpendicular to the line ABpasses through the point (0, 2).

M= 북 y-2=4x 4=4x+2

Question 1

A is the point (4, 1) and B is the point (10, 15).

Find the equation of the perpendicular bisector of the line AB.

mid =
$$(\frac{4+10}{2})$$
 = $(\frac{1+15}{2})$ = $(\frac{7}{4}, \frac{8}{6})$
m = $(\frac{5-1}{6-4})$ = $(\frac{14}{6})$ = $(\frac{7}{4})$

4-8=-3 (x-7) y= -3x+3+8

Find the equation of the line that

y= -32+11

is perpendicular to the line y = 3x - 1

[3] passes through the point (7, 4).

Question 3

Question 2

Find the co-ordinates of the mid-point of the line joining the points A(2, -5) and B(6, 9).

$$mid_{AB} = \left(\frac{2+6}{2}, -\frac{5+9}{2}\right)$$

= $(4, 2)$

The Maths Society

A straight line passes through two points with co-ordinates (6, 8) and (0, 5).

Work out the equation of the line.

$$M = \frac{5-8}{6-6} = \frac{-3}{-6} = \frac{1}{2}$$

Question 5

The line y = mx + c is parallel to the line y = 2x + 4. The distance AB is 6 units.

Find the value of m and the value of c.

$$L_1B = -2 + 6^{-4}$$

= 4
(4,0)

[3]

Question 6

4 = 221 - 8

In the diagram, the line AC has equation 2x + 3y = 17 and the line AB has equation 4x - y = 6.

The lines BC and AB intersect at B(1, -2). The lines AC and BC intersect at C(4, 3).

(a) Use algebra to find the coordinates of the point A.

$$4x-6=17-2x$$

(b) Find the equation of the line *BC*.

$$M = \frac{3+2}{4-1} = \frac{5}{3}$$
 $y + 2 = \frac{5}{3}x - \frac{5}{3}$ $y = \frac{5}{3}x - \frac{11}{3}$

[3] The Maths Society

The points A(6,2) and B(8,5) lie on a straight line.

(a) Work out the gradient of this line.

f this line. [1]
$$m = \frac{5-2}{8-6} = \frac{3}{2}$$

(b) Work out the equation of the line, giving your answer in the form y = mx + c.

[2]

[2]

[3]

[4]

Question 1

A line joins the points A(-3, 8) and B(2, -2).

Find the co-ordinates of the midpoint of AB.

$$\left(\frac{-3+2}{2}, \frac{8-2}{2}\right) = \left(\frac{1}{2}, 3\right)^{1}$$

(b) Find the equation of the line through A and B.

Give your answer in the form
$$y = mx + c$$
.

(c) Another line is parallel to
$$AB$$
 and passes through the point $(0, 7)$.

$$y - 8 = -2 C (3)$$

$$y = -2x - 6 + 8$$

$$y = -2x - 6 + 8$$

Write down the equation of this line.

$$m=-2$$
 $y=7=-2x$
 $y=-2x+7$

(d) Find the equation of the line perpendicular to AB which passes through the point (1, 5). Give your answer in the form ax + by + c = 0 where a, b and c are integers.

$$m_{1} = \frac{1}{2}$$
 $y = \frac{1}{2}(x-1)$
 $y = \frac{1}{2}(x-1)$
 $y = \frac{1}{2}(x-1)$
 $y = \frac{1}{2}(x-1)$
 $y = \frac{1}{2}(x-1)$

The Maths Society

 $-\frac{1}{2}(x+y) - \frac{1}{2} = 0 \implies \frac{1}{2}(x-y) + \frac{1}{2} = 0$

[3]

[5]

[2]

Question 2

A line joins the points A(-2, -5) and B(4, 13).

(a) Calculate the length AB.

$$\int (13+5)^{2} + (4+2)^{2} = 6 \int 10 = 18.97$$

(b) Find the equation of the line through A and B. Give your answer in the form y = mx + c.

(c) Another line is parallel to AB and passes through the point (0, -5).

Write down the equation of this line.

11101 of this line.
$$y + 5 = 3(x)$$
 $y = 3x - 5$

(d) Find the equation of the perpendicular bisector of AB.

Question 3

A line AB joins the points A(3, 4) and B(5, 8).

A=3x+i3 (a) Write down the co-ordinates of the midpoint of the line AB.

(b) Calculate the distance AB.

e distance AB.
$$\int (R-4)^2 + (S-3)^2 = 2 \int uni + \frac{1}{2} \int un$$

(c) Find the equation of the line AB.

ind the equation of the line AB.

$$\mathbf{M} = \begin{cases} \frac{P-9}{5-3} = \frac{9}{2} = 2 \\ y - 8 = 2(x-5) \\ y = 2x - 2 \end{cases}$$
[3]

(d) A line perpendicular to AB passes through the origin and through the point (6, r).

Find the value of r.
$$\mathbf{M} = \frac{1}{2} \quad \begin{array}{c} (0,0) \\ y = -\frac{1}{2} \\ y = -\frac{1}{3} \end{array}$$

Question 4

(a) A straight line joins the points (-1, -4) and (3, 8).

(ii) Find the equation of this line.

(i) Find the midpoint of this line. (2)
$$mid_{1} = \sum_{1}^{\infty} \left(-\frac{1+3}{2}, -\frac{4+8}{2}\right) = (1, 2)$$

m:
$$\frac{8+4}{3+1} = \frac{12}{4} = 3$$
 $\int \frac{9+4}{4} = 3(x+1)$ The Maths Society